rm(list = ls()) # clean-up workspace
library("tidyverse")
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✓ ggplot2 3.3.5     ✓ purrr   0.3.4
## ✓ tibble  3.1.5     ✓ dplyr   1.0.7
## ✓ tidyr   1.1.4     ✓ stringr 1.4.0
## ✓ readr   2.0.1     ✓ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()

Some exercise on ggplot2

Aesthetic mappings

Q1. What’s gone wrong with this code?

ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy, colour = "blue"))


Q2. Which variables in mpg are categorical? Which variables are continuous? (Hint: type ?mpg to read the documentation for the dataset). How can you see this information when you run mpg?


Q3. Map a continuous variable to color, size, and shape. How do these aesthetics behave differently for categorical vs. continuous variables?


Q4. What happens if you map the same variable to multiple aesthetics?


Q5. What happens if you map an aesthetic to something other than a variable name, like aes(colour = displ < 5)? Note, you’ll also need to specify x and y.


Geometric objects

Q6. What geom would you use to draw a line chart? A boxplot? A histogram? An area chart?


Q7. Will these two graphs look different? Why/why not?

ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) + 
  geom_point() + 
  geom_smooth()

ggplot() + 
  geom_point(data = mpg, mapping = aes(x = displ, y = hwy)) + 
  geom_smooth(data = mpg, mapping = aes(x = displ, y = hwy))

We will continue with ggplot exercise in next lab.