rm(list = ls()) # clean-up workspace
library("tidyverse")
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✓ ggplot2 3.3.5 ✓ purrr 0.3.4
## ✓ tibble 3.1.5 ✓ dplyr 1.0.7
## ✓ tidyr 1.1.4 ✓ stringr 1.4.0
## ✓ readr 2.0.1 ✓ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
Q1. What’s gone wrong with this code?
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy, colour = "blue"))
Q2. Which variables in mpg
are categorical? Which variables are continuous? (Hint: type ?mpg
to read the documentation for the dataset). How can you see this information when you run mpg
?
Q3. Map a continuous variable to color
, size
, and shape
. How do these aesthetics behave differently for categorical vs. continuous variables?
Q4. What happens if you map the same variable to multiple aesthetics?
Q5. What happens if you map an aesthetic to something other than a variable name, like aes(colour = displ < 5)
? Note, you’ll also need to specify x
and y
.
Q6. What geom would you use to draw a line chart? A boxplot? A histogram? An area chart?
Q7. Will these two graphs look different? Why/why not?
ggplot(data = mpg, mapping = aes(x = displ, y = hwy)) +
geom_point() +
geom_smooth()
ggplot() +
geom_point(data = mpg, mapping = aes(x = displ, y = hwy)) +
geom_smooth(data = mpg, mapping = aes(x = displ, y = hwy))
We will continue with ggplot exercise in next lab.