rm(list = ls()) # clean-up workspace
sessionInfo()
## R version 4.1.1 (2021-08-10)
## Platform: aarch64-apple-darwin20 (64-bit)
## Running under: macOS Big Sur 11.5.2
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## loaded via a namespace (and not attached):
## [1] digest_0.6.27 R6_2.5.0 jsonlite_1.7.2 magrittr_2.0.1
## [5] evaluate_0.14 rlang_0.4.11 stringi_1.7.3 jquerylib_0.1.4
## [9] bslib_0.2.5.1 rmarkdown_2.10 tools_4.1.1 stringr_1.4.0
## [13] xfun_0.25 yaml_2.2.1 compiler_4.1.1 htmltools_0.5.1.1
## [17] knitr_1.33 sass_0.4.0
Poll on HW1 extension
Profiling example with pre-allocation: you do not know unless you profile.
What I forgot last time: the size of data
is different in the last two cases.
The example with pre-allocated memory ran too fast that I had to increase the size by 10 fold to accommodate for the timer.
read.csv()
, read.table()
, read.delim()
functions import data from files.
(oringp <- read.table("https://raw.githubusercontent.com/tulane-math-7360-2021/tulane-math-7360-2021.github.io/main/HW/HW1/oringp.dat"))
## V1 V2 V3 V4 V5
## 1 1 4/12/81 6 0 66
## 2 2 11/12/81 6 1 70
## 3 3 3/22/82 6 0 69
## 4 5 11/11/82 6 0 68
## 5 6 4/04/83 6 0 67
## 6 7 6/18/83 6 0 72
## 7 8 8/30/83 6 0 73
## 8 9 11/28/83 6 0 70
## 9 41-B 2/03/84 6 1 57
## 10 41-C 4/06/84 6 1 63
## 11 41-D 8/30/84 6 1 70
## 12 41-G 10/05/84 6 0 78
## 13 51-A 11/08/84 6 0 67
## 14 51-C 1/24/85 6 3 53
## 15 51-D 4/12/85 6 0 67
## 16 51-B 4/29/85 6 0 75
## 17 51-G 6/17/85 6 0 70
## 18 51-F 7/29/85 6 0 81
## 19 51-I 8/27/85 6 0 76
## 20 51-J 10/03/85 6 0 79
## 21 61-A 10/30/85 6 2 75
## 22 61-B 11/26/85 6 0 76
## 23 61-C 1/12/86 6 1 58
## 24 61-I 1/28/86 6 NA 31
(oringp <- read.table("../../HW/HW1/oringp.dat"))
## V1 V2 V3 V4 V5
## 1 1 4/12/81 6 0 66
## 2 2 11/12/81 6 1 70
## 3 3 3/22/82 6 0 69
## 4 5 11/11/82 6 0 68
## 5 6 4/04/83 6 0 67
## 6 7 6/18/83 6 0 72
## 7 8 8/30/83 6 0 73
## 8 9 11/28/83 6 0 70
## 9 41-B 2/03/84 6 1 57
## 10 41-C 4/06/84 6 1 63
## 11 41-D 8/30/84 6 1 70
## 12 41-G 10/05/84 6 0 78
## 13 51-A 11/08/84 6 0 67
## 14 51-C 1/24/85 6 3 53
## 15 51-D 4/12/85 6 0 67
## 16 51-B 4/29/85 6 0 75
## 17 51-G 6/17/85 6 0 70
## 18 51-F 7/29/85 6 0 81
## 19 51-I 8/27/85 6 0 76
## 20 51-J 10/03/85 6 0 79
## 21 61-A 10/30/85 6 2 75
## 22 61-B 11/26/85 6 0 76
## 23 61-C 1/12/86 6 1 58
## 24 61-I 1/28/86 6 NA 31
One-page project description due today.
Facilities email: please move furniture back after class.
Dr. Hua Zhou’s slides
We follow R for Data Science by Garrett Grolemund and Hadley Wickham for the next couple of lectures.
A typical data science project:
Data wrangling.
The art of getting your data into R in a useful form for visualisation and modelling.
Data import
Data transformation.
select important variables
filter out key observations
create new variables
compute summaries
Visualisation.
We will proceed with:
tibbles | r4ds chapter 10
A data frame variant
how to construct them
data import | r4ds chapter 11
tidy data | r4ds chapter 12
tidyverse
is a collection of R packages that make data wrangling easy.
Install tidyverse
from RStudio menu Tools -> Install Packages...
or
install.packages("tidyverse")
After installation, load tidyverse
by
library("tidyverse")
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✓ ggplot2 3.3.5 ✓ purrr 0.3.4
## ✓ tibble 3.1.3 ✓ dplyr 1.0.7
## ✓ tidyr 1.1.3 ✓ stringr 1.4.0
## ✓ readr 2.0.1 ✓ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
environment(filter)
## <environment: namespace:dplyr>
environment(stats::filter)
## <environment: namespace:stats>
Tibbles are one of the unifying features of the tidyverse.
coerce a data frame to a tibble as_tibble()
Most other R packages use regular data frames.
iris
is a data frame available in base R:
# a regular data frame
iris
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
## 7 4.6 3.4 1.4 0.3 setosa
## 8 5.0 3.4 1.5 0.2 setosa
## 9 4.4 2.9 1.4 0.2 setosa
## 10 4.9 3.1 1.5 0.1 setosa
## 11 5.4 3.7 1.5 0.2 setosa
## 12 4.8 3.4 1.6 0.2 setosa
## 13 4.8 3.0 1.4 0.1 setosa
## 14 4.3 3.0 1.1 0.1 setosa
## 15 5.8 4.0 1.2 0.2 setosa
## 16 5.7 4.4 1.5 0.4 setosa
## 17 5.4 3.9 1.3 0.4 setosa
## 18 5.1 3.5 1.4 0.3 setosa
## 19 5.7 3.8 1.7 0.3 setosa
## 20 5.1 3.8 1.5 0.3 setosa
## 21 5.4 3.4 1.7 0.2 setosa
## 22 5.1 3.7 1.5 0.4 setosa
## 23 4.6 3.6 1.0 0.2 setosa
## 24 5.1 3.3 1.7 0.5 setosa
## 25 4.8 3.4 1.9 0.2 setosa
## 26 5.0 3.0 1.6 0.2 setosa
## 27 5.0 3.4 1.6 0.4 setosa
## 28 5.2 3.5 1.5 0.2 setosa
## 29 5.2 3.4 1.4 0.2 setosa
## 30 4.7 3.2 1.6 0.2 setosa
## 31 4.8 3.1 1.6 0.2 setosa
## 32 5.4 3.4 1.5 0.4 setosa
## 33 5.2 4.1 1.5 0.1 setosa
## 34 5.5 4.2 1.4 0.2 setosa
## 35 4.9 3.1 1.5 0.2 setosa
## 36 5.0 3.2 1.2 0.2 setosa
## 37 5.5 3.5 1.3 0.2 setosa
## 38 4.9 3.6 1.4 0.1 setosa
## 39 4.4 3.0 1.3 0.2 setosa
## 40 5.1 3.4 1.5 0.2 setosa
## 41 5.0 3.5 1.3 0.3 setosa
## 42 4.5 2.3 1.3 0.3 setosa
## 43 4.4 3.2 1.3 0.2 setosa
## 44 5.0 3.5 1.6 0.6 setosa
## 45 5.1 3.8 1.9 0.4 setosa
## 46 4.8 3.0 1.4 0.3 setosa
## 47 5.1 3.8 1.6 0.2 setosa
## 48 4.6 3.2 1.4 0.2 setosa
## 49 5.3 3.7 1.5 0.2 setosa
## 50 5.0 3.3 1.4 0.2 setosa
## 51 7.0 3.2 4.7 1.4 versicolor
## 52 6.4 3.2 4.5 1.5 versicolor
## 53 6.9 3.1 4.9 1.5 versicolor
## 54 5.5 2.3 4.0 1.3 versicolor
## 55 6.5 2.8 4.6 1.5 versicolor
## 56 5.7 2.8 4.5 1.3 versicolor
## 57 6.3 3.3 4.7 1.6 versicolor
## 58 4.9 2.4 3.3 1.0 versicolor
## 59 6.6 2.9 4.6 1.3 versicolor
## 60 5.2 2.7 3.9 1.4 versicolor
## 61 5.0 2.0 3.5 1.0 versicolor
## 62 5.9 3.0 4.2 1.5 versicolor
## 63 6.0 2.2 4.0 1.0 versicolor
## 64 6.1 2.9 4.7 1.4 versicolor
## 65 5.6 2.9 3.6 1.3 versicolor
## 66 6.7 3.1 4.4 1.4 versicolor
## 67 5.6 3.0 4.5 1.5 versicolor
## 68 5.8 2.7 4.1 1.0 versicolor
## 69 6.2 2.2 4.5 1.5 versicolor
## 70 5.6 2.5 3.9 1.1 versicolor
## 71 5.9 3.2 4.8 1.8 versicolor
## 72 6.1 2.8 4.0 1.3 versicolor
## 73 6.3 2.5 4.9 1.5 versicolor
## 74 6.1 2.8 4.7 1.2 versicolor
## 75 6.4 2.9 4.3 1.3 versicolor
## 76 6.6 3.0 4.4 1.4 versicolor
## 77 6.8 2.8 4.8 1.4 versicolor
## 78 6.7 3.0 5.0 1.7 versicolor
## 79 6.0 2.9 4.5 1.5 versicolor
## 80 5.7 2.6 3.5 1.0 versicolor
## 81 5.5 2.4 3.8 1.1 versicolor
## 82 5.5 2.4 3.7 1.0 versicolor
## 83 5.8 2.7 3.9 1.2 versicolor
## 84 6.0 2.7 5.1 1.6 versicolor
## 85 5.4 3.0 4.5 1.5 versicolor
## 86 6.0 3.4 4.5 1.6 versicolor
## 87 6.7 3.1 4.7 1.5 versicolor
## 88 6.3 2.3 4.4 1.3 versicolor
## 89 5.6 3.0 4.1 1.3 versicolor
## 90 5.5 2.5 4.0 1.3 versicolor
## 91 5.5 2.6 4.4 1.2 versicolor
## 92 6.1 3.0 4.6 1.4 versicolor
## 93 5.8 2.6 4.0 1.2 versicolor
## 94 5.0 2.3 3.3 1.0 versicolor
## 95 5.6 2.7 4.2 1.3 versicolor
## 96 5.7 3.0 4.2 1.2 versicolor
## 97 5.7 2.9 4.2 1.3 versicolor
## 98 6.2 2.9 4.3 1.3 versicolor
## 99 5.1 2.5 3.0 1.1 versicolor
## 100 5.7 2.8 4.1 1.3 versicolor
## 101 6.3 3.3 6.0 2.5 virginica
## 102 5.8 2.7 5.1 1.9 virginica
## 103 7.1 3.0 5.9 2.1 virginica
## 104 6.3 2.9 5.6 1.8 virginica
## 105 6.5 3.0 5.8 2.2 virginica
## 106 7.6 3.0 6.6 2.1 virginica
## 107 4.9 2.5 4.5 1.7 virginica
## 108 7.3 2.9 6.3 1.8 virginica
## 109 6.7 2.5 5.8 1.8 virginica
## 110 7.2 3.6 6.1 2.5 virginica
## 111 6.5 3.2 5.1 2.0 virginica
## 112 6.4 2.7 5.3 1.9 virginica
## 113 6.8 3.0 5.5 2.1 virginica
## 114 5.7 2.5 5.0 2.0 virginica
## 115 5.8 2.8 5.1 2.4 virginica
## 116 6.4 3.2 5.3 2.3 virginica
## 117 6.5 3.0 5.5 1.8 virginica
## 118 7.7 3.8 6.7 2.2 virginica
## 119 7.7 2.6 6.9 2.3 virginica
## 120 6.0 2.2 5.0 1.5 virginica
## 121 6.9 3.2 5.7 2.3 virginica
## 122 5.6 2.8 4.9 2.0 virginica
## 123 7.7 2.8 6.7 2.0 virginica
## 124 6.3 2.7 4.9 1.8 virginica
## 125 6.7 3.3 5.7 2.1 virginica
## 126 7.2 3.2 6.0 1.8 virginica
## 127 6.2 2.8 4.8 1.8 virginica
## 128 6.1 3.0 4.9 1.8 virginica
## 129 6.4 2.8 5.6 2.1 virginica
## 130 7.2 3.0 5.8 1.6 virginica
## 131 7.4 2.8 6.1 1.9 virginica
## 132 7.9 3.8 6.4 2.0 virginica
## 133 6.4 2.8 5.6 2.2 virginica
## 134 6.3 2.8 5.1 1.5 virginica
## 135 6.1 2.6 5.6 1.4 virginica
## 136 7.7 3.0 6.1 2.3 virginica
## 137 6.3 3.4 5.6 2.4 virginica
## 138 6.4 3.1 5.5 1.8 virginica
## 139 6.0 3.0 4.8 1.8 virginica
## 140 6.9 3.1 5.4 2.1 virginica
## 141 6.7 3.1 5.6 2.4 virginica
## 142 6.9 3.1 5.1 2.3 virginica
## 143 5.8 2.7 5.1 1.9 virginica
## 144 6.8 3.2 5.9 2.3 virginica
## 145 6.7 3.3 5.7 2.5 virginica
## 146 6.7 3.0 5.2 2.3 virginica
## 147 6.3 2.5 5.0 1.9 virginica
## 148 6.5 3.0 5.2 2.0 virginica
## 149 6.2 3.4 5.4 2.3 virginica
## 150 5.9 3.0 5.1 1.8 virginica
as_tibble(iris)
## # A tibble: 150 × 5
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## <dbl> <dbl> <dbl> <dbl> <fct>
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
## 7 4.6 3.4 1.4 0.3 setosa
## 8 5 3.4 1.5 0.2 setosa
## 9 4.4 2.9 1.4 0.2 setosa
## 10 4.9 3.1 1.5 0.1 setosa
## # … with 140 more rows
as.data.frame(tb)
Create tibble from individual vectors.
tibble(
x = 1:5,
y = 1,
z = x ^ 2 + y
)
## # A tibble: 5 × 3
## x y z
## <int> <dbl> <dbl>
## 1 1 1 2
## 2 2 1 5
## 3 3 1 10
## 4 4 1 17
## 5 5 1 26
Note values for y are recycled
We know that scalars are just length-1 vectors, how does R perform operations between vectors of different length?
If the longer object length is multiple of the shorter object length, the shorter object is recycled
If the longer object length is not multiple of the shorter object length, R outputs a warning
long.vec <- 1:10
short.vec.1 <- 1:2
short.vec.2 <- 1:3
(long.vec * short.vec.1)
## [1] 1 4 3 8 5 12 7 16 9 20
(long.vec + short.vec.1)
## [1] 2 4 4 6 6 8 8 10 10 12
(long.vec * short.vec.2)
## Warning in long.vec * short.vec.2: longer object length is not a multiple of
## shorter object length
## [1] 1 4 9 4 10 18 7 16 27 10
(long.vec + short.vec.2)
## Warning in long.vec + short.vec.2: longer object length is not a multiple of
## shorter object length
## [1] 2 4 6 5 7 9 8 10 12 11
Only length one vectors are recycled
tibble(
x = 1:5,
y = 1:2,
z = x ^ 2 + y
)
## Error: Tibble columns must have compatible sizes.
## * Size 5: Existing data.
## * Size 2: Column `y`.
## ℹ Only values of size one are recycled.
tibble()
does less than data.frame()
:
never changes the type of the inputs (e.g. it never converts strings to factors)
never changes the names of variables
never creates row names
Transposed tibbles:
tribble(
~x, ~y, ~z,
#--|--|----
"a", 2, 3.6,
"b", 1, 8.5
)
## # A tibble: 2 × 3
## x y z
## <chr> <dbl> <dbl>
## 1 a 2 3.6
## 2 b 1 8.5
By default, tibble prints the first 10 rows and all columns that fit on screen.
nycflights13::flights
## # A tibble: 336,776 × 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## 7 2013 1 1 555 600 -5 913 854
## 8 2013 1 1 557 600 -3 709 723
## 9 2013 1 1 557 600 -3 838 846
## 10 2013 1 1 558 600 -2 753 745
## # … with 336,766 more rows, and 11 more variables: arr_delay <dbl>,
## # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## # air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
To change number of rows and columns to display:
nycflights13::flights %>%
print(n = 10, width = Inf)
## # A tibble: 336,776 × 19
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## 7 2013 1 1 555 600 -5 913 854
## 8 2013 1 1 557 600 -3 709 723
## 9 2013 1 1 557 600 -3 838 846
## 10 2013 1 1 558 600 -2 753 745
## arr_delay carrier flight tailnum origin dest air_time distance hour minute
## <dbl> <chr> <int> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 11 UA 1545 N14228 EWR IAH 227 1400 5 15
## 2 20 UA 1714 N24211 LGA IAH 227 1416 5 29
## 3 33 AA 1141 N619AA JFK MIA 160 1089 5 40
## 4 -18 B6 725 N804JB JFK BQN 183 1576 5 45
## 5 -25 DL 461 N668DN LGA ATL 116 762 6 0
## 6 12 UA 1696 N39463 EWR ORD 150 719 5 58
## 7 19 B6 507 N516JB EWR FLL 158 1065 6 0
## 8 -14 EV 5708 N829AS LGA IAD 53 229 6 0
## 9 -8 B6 79 N593JB JFK MCO 140 944 6 0
## 10 8 AA 301 N3ALAA LGA ORD 138 733 6 0
## time_hour
## <dttm>
## 1 2013-01-01 05:00:00
## 2 2013-01-01 05:00:00
## 3 2013-01-01 05:00:00
## 4 2013-01-01 05:00:00
## 5 2013-01-01 06:00:00
## 6 2013-01-01 05:00:00
## 7 2013-01-01 06:00:00
## 8 2013-01-01 06:00:00
## 9 2013-01-01 06:00:00
## 10 2013-01-01 06:00:00
## # … with 336,766 more rows
Here we see the pipe operator %>%
pipes the output from previous command to the (first) argument of the next command.
To change the default print setting:
options(tibble.print_max = n, tibble.print_min = m)
: if more than n
rows, print only m
rows.options(tibble.print_min = Inf)
: print all rows.options(tibble.width = Inf)
: print all columns.df <- tibble(
x = runif(5),
y = rnorm(5)
)
df
## # A tibble: 5 × 2
## x y
## <dbl> <dbl>
## 1 0.757 -0.476
## 2 0.872 -0.360
## 3 0.476 -2.10
## 4 0.828 0.0421
## 5 0.753 0.978
Extract by name:
df$x
## [1] 0.7565059 0.8716250 0.4760646 0.8283121 0.7528014
df[["x"]]
## [1] 0.7565059 0.8716250 0.4760646 0.8283121 0.7528014
Extract by position:
df[[1]]
## [1] 0.7565059 0.8716250 0.4760646 0.8283121 0.7528014
Pipe:
df %>% .$x
## [1] 0.7565059 0.8716250 0.4760646 0.8283121 0.7528014
df %>% .[["x"]]
## [1] 0.7565059 0.8716250 0.4760646 0.8283121 0.7528014
.
is a special placeholder.
readr
package implements functions that turn flat files into tibbles.
read_csv()
(comma delimited files), read_csv2()
(semicolon seperated files), read_tsv()
(tab delimited files), read_delim()
(any delimiter).
read_fwf()
(fixed width files), read_table()
.
read_log()
(Apache style log files).
An example file heights.csv:
head heights.csv
## "earn","height","sex","ed","age","race"
## 50000,74.4244387818035,"male",16,45,"white"
## 60000,65.5375428255647,"female",16,58,"white"
## 30000,63.6291977374349,"female",16,29,"white"
## 50000,63.1085616752971,"female",16,91,"other"
## 51000,63.4024835710879,"female",17,39,"white"
## 9000,64.3995075440034,"female",15,26,"white"
## 29000,61.6563258264214,"female",12,49,"white"
## 32000,72.6985437364783,"male",17,46,"white"
## 2000,72.0394668497611,"male",15,21,"hispanic"
Read from a local file heights.csv:
(heights <- read_csv("heights.csv"))
## Rows: 1192 Columns: 6
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): sex, race
## dbl (4): earn, height, ed, age
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## # A tibble: 1,192 × 6
## earn height sex ed age race
## <dbl> <dbl> <chr> <dbl> <dbl> <chr>
## 1 50000 74.4 male 16 45 white
## 2 60000 65.5 female 16 58 white
## 3 30000 63.6 female 16 29 white
## 4 50000 63.1 female 16 91 other
## 5 51000 63.4 female 17 39 white
## 6 9000 64.4 female 15 26 white
## 7 29000 61.7 female 12 49 white
## 8 32000 72.7 male 17 46 white
## 9 2000 72.0 male 15 21 hispanic
## 10 27000 72.2 male 12 26 white
## # … with 1,182 more rows
I’m curious about relation between earn
and height
and sex
ggplot(data = heights) +
geom_point(mapping = aes(x = height, y = earn, color = sex))
Read from inline csv file:
read_csv("a,b,c
1,2,3
4,5,6")
## Rows: 2 Columns: 3
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (3): a, b, c
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## # A tibble: 2 × 3
## a b c
## <dbl> <dbl> <dbl>
## 1 1 2 3
## 2 4 5 6
Skip first n
lines:
read_csv("The first line of metadata
The second line of metadata
x,y,z
1,2,3", skip = 2)
## Rows: 1 Columns: 3
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (3): x, y, z
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## # A tibble: 1 × 3
## x y z
## <dbl> <dbl> <dbl>
## 1 1 2 3
Skip comment lines:
read_csv("# A comment I want to skip
x,y,z
1,2,3", comment = "#")
## Rows: 1 Columns: 3
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (3): x, y, z
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## # A tibble: 1 × 3
## x y z
## <dbl> <dbl> <dbl>
## 1 1 2 3
No header line:
read_csv("1,2,3\n4,5,6", col_names = FALSE)
## Rows: 2 Columns: 3
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (3): X1, X2, X3
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## # A tibble: 2 × 3
## X1 X2 X3
## <dbl> <dbl> <dbl>
## 1 1 2 3
## 2 4 5 6
No header line and specify colnames:
read_csv("1,2,3\n4,5,6", col_names = c("x", "y", "z"))
## Rows: 2 Columns: 3
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (3): x, y, z
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## # A tibble: 2 × 3
## x y z
## <dbl> <dbl> <dbl>
## 1 1 2 3
## 2 4 5 6
Specify the symbol representing missing values:
read_csv("a,b,c\n1,2,.", na = ".")
## Rows: 1 Columns: 3
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (2): a, b
## lgl (1): c
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
## # A tibble: 1 × 3
## a b c
## <dbl> <dbl> <lgl>
## 1 1 2 NA
Write to csv:
write_csv(challenge, "challenge.csv")
Write (and read) RDS files:
write_rds(challenge, "challenge.rds")
read_rds("challenge.rds")
readxl package (part of tidyverse) reads both xls and xlsx files:
library(readxl)
# xls file
read_excel("datasets.xls")
## # A tibble: 150 × 5
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## <dbl> <dbl> <dbl> <dbl> <chr>
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
## 7 4.6 3.4 1.4 0.3 setosa
## 8 5 3.4 1.5 0.2 setosa
## 9 4.4 2.9 1.4 0.2 setosa
## 10 4.9 3.1 1.5 0.1 setosa
## # … with 140 more rows
# xls file
read_excel("datasets.xlsx")
## # A tibble: 150 × 5
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## <dbl> <dbl> <dbl> <dbl> <chr>
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5 3.6 1.4 0.2 setosa
## 6 5.4 3.9 1.7 0.4 setosa
## 7 4.6 3.4 1.4 0.3 setosa
## 8 5 3.4 1.5 0.2 setosa
## 9 4.4 2.9 1.4 0.2 setosa
## 10 4.9 3.1 1.5 0.1 setosa
## # … with 140 more rows
List the sheet name:
excel_sheets("datasets.xlsx")
## [1] "iris" "mtcars" "chickwts" "quakes"
Read in a specific sheet by name or number:
read_excel("datasets.xlsx", sheet = "mtcars")
## # A tibble: 32 × 11
## mpg cyl disp hp drat wt qsec vs am gear carb
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
## 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
## 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
## 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
## 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
## 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
## 7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
## 8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
## 9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
## 10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
## # … with 22 more rows
read_excel("datasets.xlsx", sheet = 4)
## # A tibble: 1,000 × 5
## lat long depth mag stations
## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 -20.4 182. 562 4.8 41
## 2 -20.6 181. 650 4.2 15
## 3 -26 184. 42 5.4 43
## 4 -18.0 182. 626 4.1 19
## 5 -20.4 182. 649 4 11
## 6 -19.7 184. 195 4 12
## 7 -11.7 166. 82 4.8 43
## 8 -28.1 182. 194 4.4 15
## 9 -28.7 182. 211 4.7 35
## 10 -17.5 180. 622 4.3 19
## # … with 990 more rows
Control subset of cells to read:
# first 3 rows
read_excel("datasets.xlsx", n_max = 3)
## # A tibble: 3 × 5
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## <dbl> <dbl> <dbl> <dbl> <chr>
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
Excel type range
read_excel("datasets.xlsx", range = "C1:E4")
## # A tibble: 3 × 3
## Petal.Length Petal.Width Species
## <dbl> <dbl> <chr>
## 1 1.4 0.2 setosa
## 2 1.4 0.2 setosa
## 3 1.3 0.2 setosa
# first 4 rows
read_excel("datasets.xlsx", range = cell_rows(1:4))
## # A tibble: 3 × 5
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## <dbl> <dbl> <dbl> <dbl> <chr>
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
# columns B-D
read_excel("datasets.xlsx", range = cell_cols("B:D"))
## # A tibble: 150 × 3
## Sepal.Width Petal.Length Petal.Width
## <dbl> <dbl> <dbl>
## 1 3.5 1.4 0.2
## 2 3 1.4 0.2
## 3 3.2 1.3 0.2
## 4 3.1 1.5 0.2
## 5 3.6 1.4 0.2
## 6 3.9 1.7 0.4
## 7 3.4 1.4 0.3
## 8 3.4 1.5 0.2
## 9 2.9 1.4 0.2
## 10 3.1 1.5 0.1
## # … with 140 more rows
# sheet
read_excel("datasets.xlsx", range = "mtcars!B1:D5")
## # A tibble: 4 × 3
## cyl disp hp
## <dbl> <dbl> <dbl>
## 1 6 160 110
## 2 6 160 110
## 3 4 108 93
## 4 6 258 110
Specify NA
s:
read_excel("datasets.xlsx", na = "setosa")
## # A tibble: 150 × 5
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## <dbl> <dbl> <dbl> <dbl> <chr>
## 1 5.1 3.5 1.4 0.2 <NA>
## 2 4.9 3 1.4 0.2 <NA>
## 3 4.7 3.2 1.3 0.2 <NA>
## 4 4.6 3.1 1.5 0.2 <NA>
## 5 5 3.6 1.4 0.2 <NA>
## 6 5.4 3.9 1.7 0.4 <NA>
## 7 4.6 3.4 1.4 0.3 <NA>
## 8 5 3.4 1.5 0.2 <NA>
## 9 4.4 2.9 1.4 0.2 <NA>
## 10 4.9 3.1 1.5 0.1 <NA>
## # … with 140 more rows
Writing Excel files: openxlsx
and writexl
packages.
haven reads SPSS, Stata, and SAS files.
DBI, along with a database specific backend (e.g. RMySQL, RSQLite, RPostgreSQL etc) allows you to run SQL queries against a database and return a data frame.
jsonlite reads json files.
xml2 reads XML files.
tidyxl reads non-tabular data from Excel.
“Happy families are all alike; every unhappy family is unhappy in its own way.” –– Leo Tolstoy
“Tidy datasets are all alike, but every messy dataset is messy in its own way.” –– Hadley Wickham
There are three interrelated rules which make a dataset tidy:
Each variable must have its own column.
Each observation must have its own row.
Each value must have its own cell.
Example table1
table1
## # A tibble: 6 × 4
## country year cases population
## <chr> <int> <int> <int>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583
is tidy.
Example table2
table2
## # A tibble: 12 × 4
## country year type count
## <chr> <int> <chr> <int>
## 1 Afghanistan 1999 cases 745
## 2 Afghanistan 1999 population 19987071
## 3 Afghanistan 2000 cases 2666
## 4 Afghanistan 2000 population 20595360
## 5 Brazil 1999 cases 37737
## 6 Brazil 1999 population 172006362
## 7 Brazil 2000 cases 80488
## 8 Brazil 2000 population 174504898
## 9 China 1999 cases 212258
## 10 China 1999 population 1272915272
## 11 China 2000 cases 213766
## 12 China 2000 population 1280428583
is not tidy.
Example table3
table3
## # A tibble: 6 × 3
## country year rate
## * <chr> <int> <chr>
## 1 Afghanistan 1999 745/19987071
## 2 Afghanistan 2000 2666/20595360
## 3 Brazil 1999 37737/172006362
## 4 Brazil 2000 80488/174504898
## 5 China 1999 212258/1272915272
## 6 China 2000 213766/1280428583
is not tidy.
Example table4a
table4a
## # A tibble: 3 × 3
## country `1999` `2000`
## * <chr> <int> <int>
## 1 Afghanistan 745 2666
## 2 Brazil 37737 80488
## 3 China 212258 213766
is not tidy.
Example table4b
table4b
## # A tibble: 3 × 3
## country `1999` `2000`
## * <chr> <int> <int>
## 1 Afghanistan 19987071 20595360
## 2 Brazil 172006362 174504898
## 3 China 1272915272 1280428583
is not tidy.
Typical issues:
One variable might be spread across multiple columns
One variable might be scattered across multiple rows
pivot_longer()
columns into a new pair of variables.
table4a %>%
pivot_longer(c(`1999`, `2000`), names_to = "year", values_to = "cases")
## # A tibble: 6 × 3
## country year cases
## <chr> <chr> <int>
## 1 Afghanistan 1999 745
## 2 Afghanistan 2000 2666
## 3 Brazil 1999 37737
## 4 Brazil 2000 80488
## 5 China 1999 212258
## 6 China 2000 213766
We can pivot table4b longer too and then join them
tidy4a <- table4a %>%
pivot_longer(c(`1999`, `2000`), names_to = "year", values_to = "cases")
tidy4b <- table4b %>%
pivot_longer(c(`1999`, `2000`), names_to = "year", values_to = "population")
left_join(tidy4a, tidy4b)
## Joining, by = c("country", "year")
## # A tibble: 6 × 4
## country year cases population
## <chr> <chr> <int> <int>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583
pivot_wider()
is the opposite of pivot_longer()
.
table2
## # A tibble: 12 × 4
## country year type count
## <chr> <int> <chr> <int>
## 1 Afghanistan 1999 cases 745
## 2 Afghanistan 1999 population 19987071
## 3 Afghanistan 2000 cases 2666
## 4 Afghanistan 2000 population 20595360
## 5 Brazil 1999 cases 37737
## 6 Brazil 1999 population 172006362
## 7 Brazil 2000 cases 80488
## 8 Brazil 2000 population 174504898
## 9 China 1999 cases 212258
## 10 China 1999 population 1272915272
## 11 China 2000 cases 213766
## 12 China 2000 population 1280428583
table2 %>%
pivot_wider(names_from = type, values_from = count)
## # A tibble: 6 × 4
## country year cases population
## <chr> <int> <int> <int>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583
table3 %>%
separate(rate, into = c("cases", "population"))
## # A tibble: 6 × 4
## country year cases population
## <chr> <int> <chr> <chr>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583
Seperate into numeric values:
table3 %>%
separate(rate, into = c("cases", "population"), convert = TRUE)
## # A tibble: 6 × 4
## country year cases population
## <chr> <int> <int> <int>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583
Separate at a fixed position:
table3 %>%
separate(year, into = c("century", "year"), sep = 2)
## # A tibble: 6 × 4
## country century year rate
## <chr> <chr> <chr> <chr>
## 1 Afghanistan 19 99 745/19987071
## 2 Afghanistan 20 00 2666/20595360
## 3 Brazil 19 99 37737/172006362
## 4 Brazil 20 00 80488/174504898
## 5 China 19 99 212258/1272915272
## 6 China 20 00 213766/1280428583
table5
## # A tibble: 6 × 4
## country century year rate
## * <chr> <chr> <chr> <chr>
## 1 Afghanistan 19 99 745/19987071
## 2 Afghanistan 20 00 2666/20595360
## 3 Brazil 19 99 37737/172006362
## 4 Brazil 20 00 80488/174504898
## 5 China 19 99 212258/1272915272
## 6 China 20 00 213766/1280428583
unite()
is the inverse of separate()
.
table5 %>%
unite(new, century, year, sep = "")
## # A tibble: 6 × 3
## country new rate
## <chr> <chr> <chr>
## 1 Afghanistan 1999 745/19987071
## 2 Afghanistan 2000 2666/20595360
## 3 Brazil 1999 37737/172006362
## 4 Brazil 2000 80488/174504898
## 5 China 1999 212258/1272915272
## 6 China 2000 213766/1280428583